Indovina la Citta

Indice:

e Introduzione

e Abstract Eng/Ita

e Obiettivo del Gioco.../Fine del Gioco
e Gioco: Codice/Videate

e Conclusione

Introduzione:

“Indovina la Citta” & un eccitante gioco multiplayer che mette alla prova le
conoscenze dei giocatori sulle citta di tutto il mondo. Con un'interfaccia semplice e
coinvolgente, il gioco offre un'esperienza divertente e competitiva mentre i giocatori
si sfidano a indovinare il nome delle citta basandosi su immagini visualizzate.

Abstract (Eng):

“Indovina la Citta” is a multiplayer web application that challenges players to guess
the name of the city based on displayed images. This document provides a detailed
overview of the features, rules, and key elements of the game, as well as outlining its
winning condition and end game. The game utilizes WebSocket to ensure real-time
communication between players and the server, allowing for a smooth and
interactive experience. Users connect to the server to start the game and are
presented with images of cities, each followed by four answer options. Players must
select the name of the city corresponding to the image within a time limit, with the
score increasing for each correct answer. Key elements of the game include dynamic
display of city images and names, a countdown timer for each puzzle, and score
management to determine the winner at the end of the game. The player with the
highest score is declared the winner, encouraging accuracy and quick response.
“Indovina la Citta” offers an engaging and competitive experience, promoting social
interaction and challenge among players. Once the game is over, the final score is
displayed, and the winner is announced, providing a satisfying conclusion and
encouraging players to return for new challenges.

Abstract (Ita):

Il gioco "Capolavoro: Indovina la Citta" € un'applicazione web multiplayer che sfida i
giocatori a indovinare il nome della citta basandosi su immagini visualizzate. Questo
documento fornisce una panoramica dettagliata delle caratteristiche, delle regole e
degli elementi chiave del gioco, oltre a delineare la sua modalita di vittoria e la fine
del gioco.ll gioco si avvale di WebSocket per garantire una comunicazione in tempo
reale tra i giocatori e il server, consentendo un'esperienza fluida e interattiva.

Gli utenti si connettono al server per iniziare il gioco e vengono presentate immagini
di citta, ciascuna seguita da quattro opzioni di risposta. | giocatori devono
selezionare il nome della citta corrispondente all'immagine entro un tempo limite,
con il punteggio che aumenta per ogni risposta corretta.Gli elementi chiave del gioco
includono la visualizzazione dinamica delle immagini e dei nomi delle citta, un
contatore del tempo rimanente per ogni indovinello e la gestione del punteggio per
determinare il vincitore alla fine del gioco. Il giocatore con il punteggio piu alto &
dichiarato vincitore, incentivando la precisione e la rapidita di risposta."Capolavoro:
Indovina la Citta" offre un'esperienza coinvolgente e competitiva, che promuove
l'interazione sociale e la sfida tra i giocatori. Conclusa la partita, viene mostrato il
punteggio finale e il vincitore viene annunciato, fornendo una conclusione
soddisfacente e incoraggiando i giocatori a tornare per nuove sfide.In sintesi, il gioco
"Capolavoro: Indovina la Citta" rappresenta un'opportunita per i giocatori di mettere
alla prova le proprie conoscenze geografiche in un ambiente divertente e stimolante,
favorito da una comunicazione in tempo reale e da un sistema di punteggio che
premia la precisione e la velocita di risposta.

Obiettivo del Gioco:

Il gioco "Indovina la Citta" € un‘applicazione web multiplayer che sfida i giocatori a
indovinare il nome della citta basandosi su immagini visualizzate. | giocatori
competono per ottenere il punteggio piu alto indovinando correttamente il nome
della citta mostrata.

Regole del Gioco:

All'inizio del gioco, i giocatori si connettono tramite WebSocket al server.

Viene visualizzata unimmagine di una citta nel centro della schermata.

Quattro pulsanti con nomi di citta diverse vengono mostrati sotto I'immagine.

| giocatori devono fare clic sul pulsante che corrisponde al nome della citta

visualizzata.

Ogni risposta corretta incrementa il punteggio del giocatore.

Il gioco procede mostrando immagini di citta diverse a intervalli regolari.

7. Il tempo per indovinare € limitato, e il contatore viene visualizzato sulla
schermata.

8. Dopo un certo numero di immagini visualizzate o quando il tempo si
esaurisce, viene mostrato il punteggio finale.

9. Il giocatore con il punteggio piu alto alla fine vince.

o=

o o

Elementi Chiave del Codice:

e Utilizzo di WebSocket per la comunicazione in tempo reale tra i giocatori e il
server.
Visualizzazione dinamica di immagini e nomi di citta.
Contatore che tiene traccia del tempo rimanente per ogni indovinello.
Gestione del punteggio e determinazione del vincitore alla fine del gioco.

Modalita di Vittoria:

Il giocatore che ottiene il punteggio piu alto alla fine del gioco e dichiarato vincitore.
Fine del Gioco:

Il gioco termina dopo un certo numero di indovinelli o quando il tempo limite scade.
Viene visualizzato il punteggio finale e il vincitore viene annunciato.

Descrizione del Codice:

Il codice e strutturato in modo modulare e composto da due parti principali:
il frontend e il backend.

Frontend:
Il frontend & implementato utilizzando HTML, CSS e JavaScript.

e HTML: Il file HTML definisce la struttura della pagina web del gioco, inclusi gli
elementi per visualizzare I'immagine della citta, i pulsanti per le risposte, il
contatore del tempo e il punteggio.

e CSS: Lo stile CSS viene utilizzato per definire l'aspetto visivo della pagina,
inclusi colori, dimensioni e posizionamento degli elementi.

e JavaScript: Il codice JavaScript gestisce la logica del gioco, inclusi gli
aggiornamenti dell'immagine della citta, la gestione dei clic sui pulsanti, il
contatore del tempo e la comunicazione con il server WebSocket. Viene
utilizzata anche la libreria WebSocket per stabilire e gestire la connessione
con il server.

Backend:

Il backend & implementato utilizzando Node.js e il framework Express per creare un
server HTTP, e il modulo ws per gestire il server WebSocket.

e Server HTTP: Il server HTTP gestisce le richieste dei client per caricare la
pagina HTML del gioco.

e Server WebSocket: Il server WebSocket gestisce la comunicazione in tempo
reale tra i client e il server. Gestisce la connessione e la disconnessione dei
giocatori, invia informazioni sulla connessione e sul punteggio ai client, e
confronta i punteggi dei giocatori alla fine del gioco per determinare il
vincitore.

Comunicazione WebSocket:

La comunicazione tra il frontend e il backend avviene tramite WebSocket. Quando un
giocatore si connette, il server WebSocket invia informazioni sulla connessione agli
altri giocatori. Durante il gioco, il server invia I'immagine della citta, aggiorna il
contatore del tempo e riceve le risposte dei giocatori. Alla fine del gioco, confronta i
punteggi dei giocatori e invia il risultato a tutti i client.

Gestione del Tempo e del Punteggio:

Il contatore del tempo viene aggiornato ogni secondo e quando raggiunge zero,
cambia l'immagine della citta. | punteggi dei giocatori vengono incrementati quando
indovinano correttamente il nome della citta. Alla fine del gioco, il server confronta i
punteggi e determina il vincitore.

Vantaggi:

Questo approccio consente un'esperienza di gioco fluida e coinvolgente per i
giocatori, con aggiornamenti in tempo reale dell'immagine della citta, del contatore
del tempo e del punteggio. La comunicazione bidirezionale tramite WebSocket
consente una sincronizzazione efficiente tra il frontend e il backend, consentendo
una gestione rapida e affidabile del gioco multiplayer.

Il codice backend:

Il Richiamo il modulo fs per la gestione dei file, express per il framework web e path
per la gestione dei percorsi

var fs = require('fs');

const express = require(‘express’);

const path = require('path’);

Il Creo un'applicazione Express e un server HTTP basato su di essa
const server = express();
const http = require(‘http').Server(server);

Il Configuro una rotta per la radice del server, che invia il file HTML
server.get('/', (req, res) => {
res.sendFile(path.join(__dirname, '‘capolavoro.html'));

};

Il Avvio del server HTTP sulla porta 3000
http.listen(3000, () => {
console.log('Listening on 3000');

});

/I Importo il modulo WebSocket (ws)
const { Server } = require(‘ws’);

Il Variabili per tenere traccia del numero di giocatori, client WebSocket e caselle
let quanti = 0;

let clients =[];

let punteggiRicevuti = {};

let risultatoConfronto = null; // Inizializza la variabile risultatoConfronto

let punteggiFinali = {};

for (leti=1;i<=8; i++) {
punteggiFinali[i] = null; // Inizializza tutti i punteggi finali a null
punteggiRicevuti[i] = false; // Inizializza tutti i punteggi ricevuti a false

}

Il Creo un server WebSocket separato dal server HTTP
const ws_server = new Server({ noServer: true });

Il Gestione dell'aggiornamento del protocollo HTTP a WebSocket
http.on(‘'upgrade’, (request, socket, head) => {
ws_server.handleUpgrade(request, socket, head, (socket) => {
ws_server.emit(‘connection’, socket, request);
;s
};

Il Evento di connessione WebSocket
ws_server.on(‘connection’, (ws) => {
quanti++;

Il Se ci sono gia piu di un giocatore, termina la connessione del nuovo arrivato
if (clients.length > 7) {

quanti--;

ws.terminate();

}

I/l Assegna un ID univoco al WebSocket
ws.id = quanti;
clients.push(ws.id);

I/l Stampa il nuovo giocatore e gli ID dei giocatori esistenti
console.log("nuovo:" + ws.id);

lets="";

for (let z = 0; z < clients.length; z++) s = s + clients[z] + " ";

console.log("clients : " + s);

Il Invia informazioni sulla connessione a tutti i client WebSocket
let position = {

quanti: clients.length,

tipo: 0
}
let data = JSON.stringify({ 'position": position });
ws_server.clients.forEach((client) => {

client.send(data);

};

Il Invia un messaggio al client appena connesso con le informazioni sulla sua
connessione
position = {
quanti: clients.length,
chi: ws.id,
tipo: -1
}
data = JSON.stringify({ 'position': position });
ws.send(data);

Il Inizializza il punteggio ricevuto per questo client come falso
punteggiRicevuti[ws.id] = false;

Il Gestisce I'evento di chiusura della connessione WebSocket
ws.on('close’, () => {
/Il Rimuove il giocatore che si & disconnesso dalla lista dei giocatori
for (let k = 0; k < clients.length; k++) {

if (clients[k] === ws.id) {
clients.splice(k, 1);
}
}

Il Rimuove il punteggio ricevuto per questo client
delete punteggiRicevuti[ws.id];

/I Stampa I'ID del giocatore che si & disconnesso e gli ID dei giocatori rimanenti
console.log("esce:" + ws.id);

s - IIII;

for (let z = 0; z < clients.length; z++) s = s + clients[z] + " ";

console.log(“clients : " + s);

/I Invia informazioni sulla disconnessione a tutti i client WebSocket rimanenti

position = {
quanti: clients.length,
tipo: -2

}

const data = JSON.stringify({ 'position’: position });
ws_server.clients.forEach((client) => {
client.send(data);

});
)

ws.on(‘message’, (message) => {
Il Codice per gestire i messaggi WebSocket
const parsedData = JSON.parse(message);
if (parsedData && parsedData.punteggioFinale !== undefined &&
IpunteggiRicevuti[ws.id]) {
I/l Esegui le operazioni necessarie con il punteggio finale
console.log('Punteggio finale ricevuto dal client ' + ws.id + "',
parsedData.punteggioFinale);

I/l Salva il punteggio finale per questo client
punteggiFinali[ws.id] = parsedData.punteggioFinale;

/I Dopo aver salvato il punteggio finale per un client
console.log('Punteggio finale salvato per il client ' + ws.id + "',
punteggiFinali[ws.id]);

Il Imposta il punteggio ricevuto per questo client su true per indicare che é stato
ricevuto
punteggiRicevuti[ws.id] = true;

I/l Controlla se tutti i giocatori hanno inviato i loro punteggi finali
let tuttiPunteggiRicevuti = true;
for (let i = 1; i <= clients.length; i++) {

if (!punteggiRicevuti[i]) {
tuttiPunteggiRicevuti = false;
break;

}
}

if (tuttiPunteggiRicevuti) {
Il Confronta i punteggi e determina il vincitore
let vincitore = null;
let punteggioMassimo = -Infinity;
for (leti =1; i <= clients.length; i++) {
if (punteggiFinali[i] > punteggioMassimo) {
punteggioMassimo = punteggiFinali[i];
vincitore =1i;
}
}

/I Controlla se ci sono piu vincitori con lo stesso punteggio massimo
let vincitoriMultipli = [];
for (let i = 1; i <= clients.length; i++) {
if (punteggiFinali[i] === punteggioMassimo) {
vincitoriMultipli.push(i);
}
}

console.log("vince " + vincitore);
Il Invia il risultato del confronto a tutti i client
const risultatoConfronto = JSON.stringify({ 'vincitore': vincitoriMultipli });
ws_server.clients.forEach((client) => {
client.send(risultatoConfronto);
};
/I Dopo aver inviato il risultato del confronto a tutti i client
console.log('Risultato del confronto inviato a tutti i client:’, risultatoConfronto);

I/l Resettare i punteggi ricevuti per prepararsi a una nuova partita
for (let i = 1; i <= clients.length; i++) {
punteggiRicevuti[i] = false;
punteggiFinali[i] = null;
}
}
}
hE
3}

Questo codice gestisce la connessione WebSocket, la comunicazione tra i client e il
server, e il confronto dei punteggi alla fine del gioco.

Il codice frontend:

<html>

<head>
<!-- Definizione dello stile CSS -->
<style type="text/css">
.background {
background-image:
url("https://t4.ftcdn.net/jpg/02/24/03/21/360_F_224032170_7PfrDJYWjCw4Rs1WFvhPkiS
PuD02sw1q.jpg');
background-size: cover;
I* Per coprire l'intero elemento con I'immagine */
color: white;
I* Colore del testo */
padding: 20px;
text-align: center;
I* Per centrare il testo */

}

.oggetto {
background-color: blue;
color: white;
height: 50pXx;
width: 50px;
text-align: center;
font-size: 20px;
border-width: 1px;
border: solid black;
float: left;
margin: 5px;
visibility: hidden;

}

.connessioni:hover {
background-color: #080808;

}

.punteggio:hover {
background-color: #080808;
}

.client:hover {
background-color: #080808;
}

.connessioni {

position: absolute;
top: 25px;
left: 10pXx;
background-color: rgb(64, 64, 65);
color: rgh(253, 252, 252);
height: 50pXx;
width: 150px;
text-align: center;
font-size: 20px;
border-width: 1px;
border: solid black;
margin: 5px;
visibility: hidden;

}

.client {
position: absolute;
top: 25px;
left: 170px;
background-color: rgh(64, 64, 65);
color: rgh(252, 252, 252);
height: 50px;
width: 150px;
text-align: center;
font-size: 20px;
border-width: 1px;
border: solid black;
margin: 5px;
visibility: hidden;

}

.nonconn {
position: absolute;
top: 25px;
left: 10px;
background-color: pink;
color: black;
height: 50px;
width: 370px;
text-align: center;
font-size: 20px;
border-width: 1px;
border: solid black;
margin: 5px;
visibility: visible;
transform: translate(-50%, -50%);
top: 50%;
left: 50%;

}

.centro {
position: absolute;
top: 40%;
left: 50%;
transform: translate(-50%, -50%);
background-color: rgh(253, 252, 250);
color: white;
height: 300px;
width: 450px;
text-align: center;
font-size: 20px;
border-width: 1px;
border: solid black;

}

.centro img {
width: 100%;
height: 100%;
object-fit: cover;
I* Per mantenere le proporzioni dell'immagine */

}

.counter {
position: absolute;
transform: translate(-50%, -50%);
top: 20%;
left: 50%;
font-size: 20px;

}

.h1{
position: absolute;
transform: translate(-50%, -50%);
top: 5%;
left: 50%;
font-size: 50px;
display: inline-block;
font-family: verdana;

}

.azione-button {
position: absolute;
height: 75pXx;
width: 125px;

transform: translate(-50%, -50%);
font-size: 50px;

margin: 10px;

padding: 10px;

font-size: 16px;

color: white;

cursor: pointer;

border-radius: 5px;

font-size: 22px;

}

.azione-button:hover {
background-color: #2b632d;

}

.punteggio {
text-align: center;
position: absolute;
transform: translate(-50%, -50%);
top: 45%;
left: 50%;
font-size: 30px;
height: 250pXx;
width: 350px;
border: solid black;
background-color: rgb(20, 20, 20);
visibility: hidden;
animation: rainbow 10s infinite;

}

@keyframes rainbow {
0% {color: red;}

10% {color: orange;}
20% {color: yellow;}
30% {color: green;}
40% {color: blue;}
50% {color: indigo;}
60% {color: violet;}
70% {color: pink;}
80% {color: purple;}
90% {color: cyan;}
100% {color: red;}

@keyframes rainbow2 {

0% {background-color: blue;}
10% {background-color: indigo;}
20% {background-color: blue;}
30% {background-color: purple;}

40% {background-color: indigo;}
50% {background-color: blue;}
60% {background-color: purple;}
70% {background-color: indigo;}
80% {background-color: blue;}
90% {background-color: indigo;}
100% {background-color: purple;}

}

@keyframes rainbow3 {

0% {background-color: purple;}
10% {background-color: blue;}
20% {background-color: indigo;}
30% {background-color: purple;}
40% {background-color: blue;}
50% {background-color: indigo;}
60% {background-color: purple;}
70% {background-color: blue;}
80% {background-color: indigo;}
90% {background-color: purple;}
100% {background-color: blue;}

.h1 span {
animation: rainbow 10s infinite;

}

.rainbow-button2 {
animation: rainbow2 20s infinite alternate;
transition: box-shadow 0.3s;
}
.rainbow-button3 {
animation: rainbow3 20s infinite alternate;
transition: box-shadow 0.3s;
}
.rainbow-button2:hover {
box-shadow: 0 4px 8px rgb(255, 255, 255);
}
.rainbow-button3:hover {
box-shadow: 0 4px 8px rgba(255, 255, 255);
}
</style>
</head>

<body class="background">

<!l-- Intestazione del gioco -->

<h1 class="h1">
I
N
D
0
V
I
N
A
 L
A
 C
I
T
T
A

</h1>

<!-- Elementi HTML per visualizzare le connessioni e i giocatori -->
<div id="B' class='connessioni'></div>

<div id="C’ class="client'></div>

<div id="D’ class='nonconn'>Troppe connessioni</div>

<!-- Elemento HTML per visualizzare I'immagine al centro -->
<div class='centro’ id='centroDiv'></div>

<l-- Elemento HTML per visualizzare il contatore del tempo -->
<div id="counter' class="counter'></div>

<!-- Elemento HTML per visualizzare il punteggio finale -->
<div id="punteggio’ class="punteggio'></div>

<div id="p1' class="punteggio rainbow'></div>

<!-- Pulsanti per le azioni (indovinare la citta) -->

<button class="azione-button rainbow-button3"” id="n1" style="top: 65%; left: 45%;"
onclick="eseguiAzione('dubai')">Dubai</button>

<button class="azione-button rainbow-button2" id="n2" style="top: 65%; left: 54%;"
onclick="eseguiAzione('roma’)">Roma</button>

<button class="azione-button rainbow-button2" id="n3" style="top: 75%; left: 45%;"
onclick="eseguiAzione('barcellona’)">Barcellona</button>

<button class="azione-button rainbow-button3" id="n4" style="top: 75%; left: 54%;"
onclick="eseguiAzione('parigi')">Parigi</button>

<I-- Script JavaScript per la logica del gioco -->

<script>
Il Inizializzazione della connessione WebSocket
let webSocket = new WebSocket('ws://${location.host}’);
Il Variabili per il punteggio, la citta corrente, le immagini visualizzate e il tempo
rimanente
let punteggioAttuale = 0;
let cittaCorrente;
let immaginiVisualizzate = [];
let tempoRimanente = 0; // inizializza il contatore a 0 secondi
let punteggioFinale = 0;

Il Gestore degli eventi quando viene ricevuto un messaggio dalla WebSocket
webSocket.onmessage = (event) => {
Il Parsa il messaggio JSON ricevuto
const data = JSON.parse(event.data); //é utilizzata per convertire una stringa
JSON ricevuta attraverso un evento WebSocket in un oggetto JavaScript.

I Ottieni i riferimenti agli elementi HTML utilizzati nel gioco
const eb = document.getElementByld('B’);

const ec = document.getElementByld('C');

const ed = document.getElementByld('D’);

const centroDiv = document.getElementByld(‘centroDiv');
const counterDiv = document.getElementByld(‘counter’);
const p = document.getElementByld('punteggio’);

const b1 = document.getElementByld('n1’);

const b2 = document.getElementByld('n2');

const b3 = document.getElementByld('n3');

const b4 = document.getElementByld('n4');

Il Verifica se il messaggio contiene il vincitore
if (data.vincitore !== undefined) {
console.log(data.vincitore);
Il Visualizza il punteggio finale e i vincitori
const p1 = document.getElementByld('p1’);
if (data.vincitore.length > 1) {
const vincitori = data.vincitore.map((vincitore) => "GIOCATORE
${vincitore}’).join(’, ');
p1.innerHTML = "
PUNTEGGIO FINALE:
${punteggioAttuale}

VINCITORI:
${vincitori}

LA PARTITA E
FINITA";
} else if (data.vincitore > 0 && data.vincitore.length <= 1) {
const vincitori = data.vincitore.map((vincitore) => "GIOCATORE
${vincitore}").join(’, ');
p1.innerHTML = "
PUNTEGGIO FINALE:
${punteggioAttuale}

VINCITORE:
${vincitori}

LA PARTITA E
FINITA";
} else {

p1.innerHTML = "
PUNTEGGIO FINALE:
${punteggioAttuale}

NESSUN VINCITORE

LA PARTITA E FINITA’;
}
p1.style.visibility = 'visible';
p.style.visibility = 'hidden’;
}

Il Gestisci diversi tipi di messaggi ricevuti
if (data.position.tipo && data.position.tipo === 999) {

I/l Nascondi gli altri elementi
counterDiv.style.visibility = 'hidden’;
centroDiv.style.visibility = ‘hidden’;
b1.style.visibility = 'hidden’;
b2.style.visibility = 'hidden';
b3.style.visibility = 'hidden';
b4.style.visibility = 'hidden’;

return;

}

if (data.position.tipo == 0) {
Il Messaggio di connessione
const cosa = data.position.cosa;
const quanti = data.position.quanti;

eb.innerHTML = "Connessi:" + quanti;
eb.style.visibility = "visible";
ed.style.visibility = "hidden";

}

if (data.position.tipo == -1) {
Il Messaggio di giocatore
const chi = data.position.chi;
const quanti = data.position.quanti;
ec.innerHTML = "Giocatore:" + chi;
ec.style.visibility = "visible™;

}

if (data.position.tipo == -2) {
Il Messaggio di aggiornamento connessioni
const quanti = data.position.quanti;
eb.innerHTML = "Connessi:" + quanti;

}

/I Cambia I'immagine al centro ogni 10 secondi

const immagini = [

{ url:
"https://arenatours.com/wp-content/uploads/united-arab-emirates/tour-por-la-ciudad-d
e-dubai/tour-por-la-ciudad-de-dubai-0-0.jpeg", citta: ‘dubai’ },

{ url:
"https://siviaggia.it/wp-content/uploads/sites/2/2021/03/laghi-love-dubai.jpeg”, citta:
‘dubai’ },

{ url:
"https://media-assets.vanityfair.it/photos/651286895935f9b24bf062d1/16:9/w_1280,c_li
mit/Large-Dubai%20Creek%201R9A8165_Floor.jpg", citta: 'dubai' },

{ url:
"https://cdn-imgix.headout.com/collection-card-image/158/image/09c609a1134ea7b034
ee4cbd61bdbba5-158-dubai-002-dubai-burj-khalifa-01.jpg", citta: ‘dubai’ },

{ url:
"https://biglietti.roma.it/wp-content/uploads/sites/131/fontana-trevi-vasca-hd.jpg",
citta: ‘roma'},

{ url: "https://lwww.noidiroma.com/wp-content/uploads/2017/10/il-vaticano.jpg”,
citta: 'roma'},

{ url:
"https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Stadio_Olimpico_2024.j
pg/1200px-Stadio_Olimpico_2024.jpg", citta: 'roma’'},

{ url:
"https://www.expedia.it/stories/wp-content/uploads/2021/06/15970-share-image.jpg”,
citta: ‘roma'},

{ url: "https:/l[fermoiltempoeviaggio.it/'wp-content/uploads/2022/07/Bacio.jpg",
citta: 'barcellona’ },

{ url: "https://attrazionibarcellona.it/images/tickets_camp_nou.jpg", citta:
'‘barcellona’ },

{ url:
"https://www.limprenditore.com/wp-content/uploads/2019/02/3.Modello-Barcellona-19
32x966.jpg", citta: 'barcellona’ },

{ url:
"https://www.meteoweb.eu/wp-content/uploads/2014/07/SAGRADA-FAMILIA-COP.jpg",
citta: 'barcellona’ },

{ url:
"https://upload.wikimedia.org/wikipedia/commons/6/66/Louvre_Museum_Wikimedia_C
ommons.jpg", citta: 'parigi’ },

{ url:
"https://www.raccontaviaggi.it/wp-content/uploads/2022/09/Cose_principali_da_veder
e_a_Parigi_Arco_di_Trionfo.jpg", citta: 'parigi’ },

{ url:
"https://img-prod.tgcom24.mediaset.it/images/2022/04/05/133041574-7a84a225-ef6d-48
2c-a459-fb9f5e79d89e.jpg", citta: 'parigi' },

{ url:
"https://hips.hearstapps.com/hmg-prod/images/the-eiffel-tower-is-seen-before-the-ligh
ts-are-switched-off-news-photo-1652029958.jpg", citta: 'parigi’ }

I

I/l Funzione per cambiare I'immagine visualizzata
function cambialmmagine() {
Il Se tutte le immagini sono state visualizzate almeno una volta, ferma la
visualizzazione
if immaginiVisualizzate.length === immagini.length) {
clearinterval(counterinterval);
counterDiv.style.visibility = "hidden";
centroDiv.style.visibility = "hidden";
b1.style.visibility = "hidden";
b2.style.visibility = "hidden";
b3.style.visibility = "hidden";
b4.style.visibility = "hidden";
mostraPunteggioFinale();
return;

}

Il Seleziona una nuova immagine in modo casuale
let numeroCasuale;
do {
numeroCasuale = Math.floor(Math.random() * immagini.length);
} while (immaginiVisualizzate.includes(numeroCasuale));

/I Aggiungi I'immagine visualizzata alla lista

immaginiVisualizzate.push(numeroCasuale);

cittaCorrente = immagini[numeroCasuale].citta;

centroDiv.innerHTML = "<img src="${immagini[numeroCasuale].url}"
alt="Immagine di ${cittaCorrente}">";

}

I/l Funzione per mostrare il punteggio finale
function mostraPunteggioFinale() {
punteggioFinale = punteggioAttuale;
p.innerHTML = "
PUNTEGGIO FINALE: ${punteggioFinale}

IN
ATTESA DEGLI ALTRI GIOCATORI...;
p-style.visibility = "visible’;
inviaPunteggioFinale();

}

function inviaPunteggioFinale() {
const data = JSON.stringify({ punteggioFinale: punteggioFinale });
webSocket.send(data);

}

Il Funzione per aggiornare il contatore del tempo

function aggiornaContatore() {
counterDiv.innerHTML = "Tempo rimanente: ${tempoRimanente} secondi’;
tempoRimanente = tempoRimanente - 0.5;

/Il Quando il tempo arriva a 0, cambia I'immagine

if (tempoRimanente < 0) {
tempoRimanente = 20; // resetta il contatore a 10 secondi quando arrivaa 0
cambialmmagine();

}
}

/I Avvia la funzione di aggiornamento del contatore ogni secondo
const counterinterval = setinterval(aggiornaContatore, 1000);

b

Il Funzione chiamata quando viene cliccato uno dei pulsanti di azione
function eseguiAzione(cittaCliccata) {

Il Se la citta cliccata e corretta, incrementa il punteggio e azzera il tempo
if (cittaCliccata === cittaCorrente) {

punteggioAttuale++;

tempoRimanente = 0;
}else {

tempoRimanente = 0;

}
}

</script>
</body>

</html>

Questo codice HTML definisce la struttura della pagina del gioco "Indovina la Citta" e
include gli elementi per visualizzare connessioni, giocatori, immagini, contatore del
tempo, punteggio e pulsanti per le azioni. Il codice JavaScript presente all'interno
dello script gestisce la logica del gioco, incluso il cambio di immagini, il conteggio
del tempo e la gestione delle risposte dei giocatori.

Videate del gioco:

Schermata Client 1(Giocatore 1):

Tempo rimanente: 8 secondi

Dubai Roma

Barcellona Parigi

Schermata Client 2(Giocatore 2):

Dubai

Barcellona

Schermata Finale:

La documentazione completa del gioco "Indovina la Citta" offre una visione
dettagliata di tutte le sue componenti, inclusi sia il frontend che il backend. Le
videate aggiuntive forniscono un'illustrazione visiva del gioco in azione, facilitando la
comprensione del suo funzionamento. Dal collegamento dei giocatori al server
WebSocket alla gestione del punteggio e alla determinazione del vincitore, ogni
aspetto del gioco e stato chiarito in modo esaustivo. Grazie a questa
documentazione, € possibile ottenere una visione chiara e completa del gioco e
apportare eventuali miglioramenti o modifiche con facilita.

Link al GitHub di Indovina la Citta: https://fabiomonas.github.io/Capolavoro/

Fabio Monas

https://fabiomonas.github.io/Capolavoro/

